Mobile Health (mhealth)? Internet-based Survey & Research Methodology? Research Instruments, Questionnaires, and Tools?
Advertisement: Preregister now for the Medicine 2.0 Congress
Original Paper
Collecting Maternal Health Information From HIV-Positive Pregnant Women Using Mobile Phone-Assisted Face-to-Face Interviews in Southern Africa
Alastair van Heerden1,2, PhD; Shane Norris3, PhD; Stephen Tollman4,5,6, PhD; Linda Richter1,3, PhD; Mary Jane Rotheram-Borus7, PhD
1Human Sciences Research Council, Pietermaritzburg, South Africa
2School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
3MRC/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
4MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
5Centre for Global Health Research, Ume? University, Ume?, Sweden
6INDEPTH Network, Accra, Ghana
7Global Center for Children and Families, University of California at Los Angeles, Los Angeles, CA, United States
Alastair van Heerden, PhD
Human Sciences Research Council
PO Box 90
Msunduzi
Pietermaritzburg, 3201
South Africa
Phone: 27 333245015
Fax: 27 333241131
Email:
ABSTRACT
Background: Most of the world?s women living with human immunodeficiency virus (HIV) reside in sub-Saharan Africa. Although efforts to reduce mother-to-child transmission are underway, obtaining complete and accurate data from rural clinical sites to track progress presents a major challenge.Objective: To describe the acceptability and feasibility of mobile phones as a tool for clinic-based face-to-face data collection with pregnant women living with HIV in South Africa.
Methods: As part of a larger clinic-based trial, 16 interviewers were trained to conduct mobile phone?assisted personal interviews (MPAPI). These interviewers (participant group 1) completed the same short questionnaire based on items from the Technology Acceptance Model at 3 different time points. Questions were asked before training, after training, and 3 months after deployment to clinic facilities. In addition, before the start of the primary intervention trial in which this substudy was undertaken, 12 mothers living with HIV (MLH) took part in a focus group discussion exploring the acceptability of MPAPI (participant group 2). Finally, a sample of MLH (n=512) enrolled in the primary trial were asked to assess their experience of being interviewed by MPAPI (participant group 3).
Results: Acceptability of the method was found to be high among the 16 interviewers in group 1. Perceived usefulness was reported to be slightly higher than perceived ease of use across the 3 time points. After 3 months of field use, interviewer perceptions of both perceived ease of use and perceived usefulness were found to be higher than before training. The feasibility of conducting MPAPI interviews in this setting was found to be high. Network coverage was available in all clinics and hardware, software, cost, and secure transmission to the data center presented no significant challenges over the 21-month period. For the 12 MHL participants in group 2, anxiety about the multimedia capabilities of the phone was evident. Their concern centered on the possibility that their privacy may be invaded by interviewers using the mobile phone camera to photograph them. For participants in group 3, having the interviewer sit beside vs across from the interviewee during the MPAPI interview was received positively by 94.7% of MHL. Privacy (6.3%) and confidentiality (5.3%) concerns were low for group 3 MHL.
Conclusions: Mobile phones were found both to be acceptable and feasible in the collection of maternal and child health data from women living with HIV in South Africa.
Trial Registration: Clinicaltrials.gov NCT00972699; http://clinicaltrials.gov/ct2/show/NCT00972699 (Archived by WebCite at http://clinicaltrials.gov/ct2/show/NCT00972699)
(J Med Internet Res 2013;15(6):e116)
doi:10.2196/jmir.2207
KEYWORDS
mobile phones; human immunodeficiency virus; mobile health
One-half of people living with human immunodeficiency virus (HIV) globally are women and 76% of all HIV-positive women live in sub-Saharan Africa [1]. Sub-Saharan Africa accounts for almost half of the world?s maternal, newborn, and child deaths with 4.7 million children and 276,000 women dying annually [2,3]. Mothers living with HIV (MLH) are particularly vulnerable and at risk of adverse maternal outcomes with at least 20% of maternal deaths being HIV-related [1]. South Africa makes up a large proportion of this disease burden with 3.2 million women living with HIV [1], of whom 200,000 annually are pregnant [4]. The Province of KwaZulu-Natal has the highest HIV prevalence in South Africa [5]. The national prevalence is approximately 11% [5], whereas 40% to 60% of pregnant women in rural KwaZulu-Natal are HIV-positive [6,7].
In response to this crisis, South Africa has implemented the Prevention of Maternal-to-Child Transmission (PMTCT) package as recommended by the World Health Organization (WHO). The PMTCT program requires newly pregnant women to complete a series of sequential steps, also known as the PMTCT cascade [8], that are aimed at first diagnosing and then treating HIV infection [9]. Under ideal circumstances, in which no barriers exist to the completion of all tasks, PMTCT has been shown to be highly effective at reducing HIV transmission to less than 2% at childbirth [10]. Under the less than ideal circumstances faced by many MLH in low- and middle-income countries, transmission can occur in approximately 1 in 4 deliveries [11]. Some of the challenges that make adherence to each of the PMTCT tasks difficult are being unable to afford transportation to the clinic, fear of stigmatization, increased household conflict, and lack of partner support [8]. To better understand these barriers and their impact on the loss of women through the PMTCT cascade requires accurate, timely, and detailed information. Yet gathering data that tracks women?s progress through PMTCT to determine how well the system is performing is beset by its own challenges.
One of the major challenges faced in the collection of high-quality data is human resource constraints. Trained and qualified health staff are in short supply in many resource-constrained settings [12]. Task-shifting strategies used to address these shortages, have led to a perceived increased burden for data collection and collation [13]. Minimal support, delayed feedback, little understanding of the usefulness of the data, and no interpretation of raw scores mean that the completion and submission of multiple paper-based registers for statistical purposes is often regarded as a low priority for busy and overburdened staff [13]. Therefore, it is unsurprising that register data has been shown to be fragmented, error prone, incomplete, and inaccessible [14,15].
The usefulness of this register data is further compromised by the fact that it is unlinked, ie, it is not possible to link individual clinic visits to the same person. This means that although aggregate data may be available, it is difficult to track the path of individuals through the PMTCT cascade. This makes it difficult to identify and understand the bottlenecks in the cascade. These constraints and challenges raise the question whether there is not a more efficient way to support staff and perform monitoring and evaluation of the PMTCT program in geographically remote primary health care facilities [16].
There is currently a groundswell of interest in the use of mobile phones and information communication technologies in the support of health [17,18]. The growing body of mHealth literature provides examples of the use of mobile phones as data collection tools in low- and middle-income countries. Although evidence is mixed, the use of mobile phones as data collection tools has been found to increase data quality, speed up the turnaround time from collection to analysis, and improve interfacility communications [19-22]. Poor follow-up rates could potentially be improved with mobile phones by providing links to participants that are cheaper and more immediate than travel to facilities. These advantages over traditional paper-based clinic registers suggest mobile phones are a potential tool with which to address some of the challenges currently experienced in collecting health information through the PMTCT cascade. The aim of this paper is to describe the feasibility and acceptability of using a mobile phone survey application to collect data from pregnant women living with HIV enrolled into the PMTCT program in KwaZulu-Natal, South Africa.
Study Design
This study was nested within a larger clinic-based randomized cluster trial known as Project Masihambisane (?let us walk together?; Clinicaltrials.gov NCT00972699) [23]. The primary study aimed to improve mental and physical health outcomes of HIV-positive mothers and their babies by supplementing the PMTCT with paraprofessional peer mentors. Using a mixed-methods design, qualitative data from a single, small focus group were supplemented with 2 quantitative questionnaires collected using a mobile phone survey application. Paradata, or data on the data collection process, were gathered in order to examine the feasibility of mobile phone-assisted personal interviewing (MPAPI).
Mobile Phone-Assisted Personal Interviewing
The MPAPI survey platform was supplied by Mobenzi Researcher [24], a commercial vendor based in South Africa. The solution offered by Mobenzi includes both a mobile application and a Web portal. The Java Platform Micro Edition (Java ME) application runs on all handsets compliant with mobile information device profile (MIDP) 2.0. It provides full survey functionality, including the ability to create various question types, mark fields as mandatory, and intelligently manage survey branching (Figure 1). The software is now also available for Android handsets. The Java ME application was installed on Nokia E61 handsets. These mobile phones run on the Symbian S60 operating system, have a 2.9-inch thin film transistor screen, 64 megabyte random-access memory (RAM), Bluetooth, Wi-Fi, a QWERTY keyboard, and a 1500 milliamp hour battery.
Once installed, the software was able to communicate, using either Wi-Fi or a cellular data link, with the Mobenzi server. The server provided, for download, the surveys designed using the Web portal (Figure 2). The server also received, stored, and aggregated the surveys completed on the handset (Figures 3-5) for download as a comma-separated file. Mobenzi offered programmatic access to both surveys and data through an application programming interface (API).
If no data connection was available at the time of survey completion, the response was saved on the handset until a connection was re-established. The MTN mobile network was used to upload survey responses from the handset to server. Figure 6 depicts a typical example of a fieldworker conducting a mobile phone?assisted personal interview outside a primary health care facility.
Source: http://www.jmir.org/2013/6/e116/
dark shadows trailer nate mcmillan clooney arrested southern miss rod blagojevich rod blagojevich uconn
কোন মন্তব্য নেই:
একটি মন্তব্য পোস্ট করুন